3.79 \(\int \sqrt{a+a \cos (c+d x)} (A+B \cos (c+d x)) \sec ^2(c+d x) \, dx\)

Optimal. Leaf size=68 \[ \frac{\sqrt{a} (A+2 B) \tanh ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{a \cos (c+d x)+a}}\right )}{d}+\frac{a A \tan (c+d x)}{d \sqrt{a \cos (c+d x)+a}} \]

[Out]

(Sqrt[a]*(A + 2*B)*ArcTanh[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/d + (a*A*Tan[c + d*x])/(d*Sqrt[a
+ a*Cos[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.162592, antiderivative size = 68, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 33, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.091, Rules used = {2980, 2773, 206} \[ \frac{\sqrt{a} (A+2 B) \tanh ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{a \cos (c+d x)+a}}\right )}{d}+\frac{a A \tan (c+d x)}{d \sqrt{a \cos (c+d x)+a}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + a*Cos[c + d*x]]*(A + B*Cos[c + d*x])*Sec[c + d*x]^2,x]

[Out]

(Sqrt[a]*(A + 2*B)*ArcTanh[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/d + (a*A*Tan[c + d*x])/(d*Sqrt[a
+ a*Cos[c + d*x]])

Rule 2980

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.
) + (f_.)*(x_)])^(n_), x_Symbol] :> -Simp[(b^2*(B*c - A*d)*Cos[e + f*x]*(c + d*Sin[e + f*x])^(n + 1))/(d*f*(n
+ 1)*(b*c + a*d)*Sqrt[a + b*Sin[e + f*x]]), x] + Dist[(A*b*d*(2*n + 3) - B*(b*c - 2*a*d*(n + 1)))/(2*d*(n + 1)
*(b*c + a*d)), Int[Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f, A
, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[n, -1]

Rule 2773

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(-2*
b)/f, Subst[Int[1/(b*c + a*d - d*x^2), x], x, (b*Cos[e + f*x])/Sqrt[a + b*Sin[e + f*x]]], x] /; FreeQ[{a, b, c
, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \sqrt{a+a \cos (c+d x)} (A+B \cos (c+d x)) \sec ^2(c+d x) \, dx &=\frac{a A \tan (c+d x)}{d \sqrt{a+a \cos (c+d x)}}+\frac{1}{2} (A+2 B) \int \sqrt{a+a \cos (c+d x)} \sec (c+d x) \, dx\\ &=\frac{a A \tan (c+d x)}{d \sqrt{a+a \cos (c+d x)}}-\frac{(a (A+2 B)) \operatorname{Subst}\left (\int \frac{1}{a-x^2} \, dx,x,-\frac{a \sin (c+d x)}{\sqrt{a+a \cos (c+d x)}}\right )}{d}\\ &=\frac{\sqrt{a} (A+2 B) \tanh ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{a+a \cos (c+d x)}}\right )}{d}+\frac{a A \tan (c+d x)}{d \sqrt{a+a \cos (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 0.199585, size = 85, normalized size = 1.25 \[ \frac{\sec \left (\frac{1}{2} (c+d x)\right ) \sec (c+d x) \sqrt{a (\cos (c+d x)+1)} \left (\sqrt{2} (A+2 B) \cos (c+d x) \tanh ^{-1}\left (\sqrt{2} \sin \left (\frac{1}{2} (c+d x)\right )\right )+2 A \sin \left (\frac{1}{2} (c+d x)\right )\right )}{2 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a + a*Cos[c + d*x]]*(A + B*Cos[c + d*x])*Sec[c + d*x]^2,x]

[Out]

(Sqrt[a*(1 + Cos[c + d*x])]*Sec[(c + d*x)/2]*Sec[c + d*x]*(Sqrt[2]*(A + 2*B)*ArcTanh[Sqrt[2]*Sin[(c + d*x)/2]]
*Cos[c + d*x] + 2*A*Sin[(c + d*x)/2]))/(2*d)

________________________________________________________________________________________

Maple [B]  time = 3.951, size = 642, normalized size = 9.4 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+cos(d*x+c)*a)^(1/2)*(A+B*cos(d*x+c))*sec(d*x+c)^2,x)

[Out]

cos(1/2*d*x+1/2*c)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*a*(A*ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(a^(1/2)*2^(1/2
)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)+a*2^(1/2)*cos(1/2*d*x+1/2*c)+2*a))+A*ln(-4/(-2*cos(1/2*d*x+1/2*c)+2^(1/2))*(a
^(1/2)*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)-a*2^(1/2)*cos(1/2*d*x+1/2*c)+2*a))+2*B*ln(4/(2*cos(1/2*d*x+1/2*c
)+2^(1/2))*(a^(1/2)*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)+a*2^(1/2)*cos(1/2*d*x+1/2*c)+2*a))+2*B*ln(-4/(-2*co
s(1/2*d*x+1/2*c)+2^(1/2))*(a^(1/2)*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)-a*2^(1/2)*cos(1/2*d*x+1/2*c)+2*a)))*
sin(1/2*d*x+1/2*c)^2+2*A*a^(1/2)*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)+A*ln(-4/(-2*cos(1/2*d*x+1/2*c)+2^(1/2)
)*(a^(1/2)*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)-a*2^(1/2)*cos(1/2*d*x+1/2*c)+2*a))*a+A*ln(4/(2*cos(1/2*d*x+1
/2*c)+2^(1/2))*(a^(1/2)*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)+a*2^(1/2)*cos(1/2*d*x+1/2*c)+2*a))*a+2*B*ln(-4/
(-2*cos(1/2*d*x+1/2*c)+2^(1/2))*(a^(1/2)*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)-a*2^(1/2)*cos(1/2*d*x+1/2*c)+2
*a))*a+2*B*ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(a^(1/2)*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)+a*2^(1/2)*cos(1
/2*d*x+1/2*c)+2*a))*a)/a^(1/2)/(2*cos(1/2*d*x+1/2*c)+2^(1/2))/(2*cos(1/2*d*x+1/2*c)-2^(1/2))/sin(1/2*d*x+1/2*c
)/(cos(1/2*d*x+1/2*c)^2*a)^(1/2)/d

________________________________________________________________________________________

Maxima [B]  time = 1.8696, size = 959, normalized size = 14.1 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^(1/2)*(A+B*cos(d*x+c))*sec(d*x+c)^2,x, algorithm="maxima")

[Out]

-1/4*(4*sqrt(2)*cos(5/2*d*x + 5/2*c)*sin(2*d*x + 2*c) + 4*sqrt(2)*cos(3/2*d*x + 3/2*c)*sin(2*d*x + 2*c) - 4*sq
rt(2)*cos(2*d*x + 2*c)*sin(3/2*d*x + 3/2*c) - (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) +
1)*log(2*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2
*sqrt(2)*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 2*sqrt(2)*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c)))
 + 2) + (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)*log(2*cos(1/2*arctan2(sin(d*x + c),
 cos(d*x + c)))^2 + 2*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sqrt(2)*cos(1/2*arctan2(sin(d*x + c),
 cos(d*x + c))) - 2*sqrt(2)*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 2) - (cos(2*d*x + 2*c)^2 + sin(2*d*
x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)*log(2*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sin(1/2*arctan2(
sin(d*x + c), cos(d*x + c)))^2 - 2*sqrt(2)*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 2*sqrt(2)*sin(1/2*ar
ctan2(sin(d*x + c), cos(d*x + c))) + 2) + (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)*l
og(2*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 - 2*sqr
t(2)*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c))) - 2*sqrt(2)*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 2
) - 4*(sqrt(2)*cos(2*d*x + 2*c) + sqrt(2))*sin(5/2*d*x + 5/2*c) + 4*(sqrt(2)*cos(2*d*x + 2*c)^2 + sqrt(2)*sin(
2*d*x + 2*c)^2 + 2*sqrt(2)*cos(2*d*x + 2*c) + sqrt(2))*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c))) - 4*sqrt(2
)*sin(3/2*d*x + 3/2*c))*A*sqrt(a)/((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)*d)

________________________________________________________________________________________

Fricas [B]  time = 1.56449, size = 406, normalized size = 5.97 \begin{align*} \frac{{\left ({\left (A + 2 \, B\right )} \cos \left (d x + c\right )^{2} +{\left (A + 2 \, B\right )} \cos \left (d x + c\right )\right )} \sqrt{a} \log \left (\frac{a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} - 4 \, \sqrt{a \cos \left (d x + c\right ) + a} \sqrt{a}{\left (\cos \left (d x + c\right ) - 2\right )} \sin \left (d x + c\right ) + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right ) + 4 \, \sqrt{a \cos \left (d x + c\right ) + a} A \sin \left (d x + c\right )}{4 \,{\left (d \cos \left (d x + c\right )^{2} + d \cos \left (d x + c\right )\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^(1/2)*(A+B*cos(d*x+c))*sec(d*x+c)^2,x, algorithm="fricas")

[Out]

1/4*(((A + 2*B)*cos(d*x + c)^2 + (A + 2*B)*cos(d*x + c))*sqrt(a)*log((a*cos(d*x + c)^3 - 7*a*cos(d*x + c)^2 -
4*sqrt(a*cos(d*x + c) + a)*sqrt(a)*(cos(d*x + c) - 2)*sin(d*x + c) + 8*a)/(cos(d*x + c)^3 + cos(d*x + c)^2)) +
 4*sqrt(a*cos(d*x + c) + a)*A*sin(d*x + c))/(d*cos(d*x + c)^2 + d*cos(d*x + c))

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))**(1/2)*(A+B*cos(d*x+c))*sec(d*x+c)**2,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [B]  time = 2.85137, size = 351, normalized size = 5.16 \begin{align*} \frac{{\left (A \sqrt{a} + 2 \, B \sqrt{a}\right )} \log \left ({\left |{\left (\sqrt{a} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - \sqrt{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a}\right )}^{2} - a{\left (2 \, \sqrt{2} + 3\right )} \right |}\right ) -{\left (A \sqrt{a} + 2 \, B \sqrt{a}\right )} \log \left ({\left |{\left (\sqrt{a} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - \sqrt{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a}\right )}^{2} + a{\left (2 \, \sqrt{2} - 3\right )} \right |}\right ) + \frac{4 \, \sqrt{2}{\left (3 \,{\left (\sqrt{a} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - \sqrt{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a}\right )}^{2} A a^{\frac{3}{2}} - A a^{\frac{5}{2}}\right )}}{{\left (\sqrt{a} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - \sqrt{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a}\right )}^{4} - 6 \,{\left (\sqrt{a} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - \sqrt{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a}\right )}^{2} a + a^{2}}}{2 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^(1/2)*(A+B*cos(d*x+c))*sec(d*x+c)^2,x, algorithm="giac")

[Out]

1/2*((A*sqrt(a) + 2*B*sqrt(a))*log(abs((sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^2 -
 a*(2*sqrt(2) + 3))) - (A*sqrt(a) + 2*B*sqrt(a))*log(abs((sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x +
1/2*c)^2 + a))^2 + a*(2*sqrt(2) - 3))) + 4*sqrt(2)*(3*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2
*c)^2 + a))^2*A*a^(3/2) - A*a^(5/2))/((sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^4 -
6*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^2*a + a^2))/d